

Operating instructions

SP01075 Control unit for vibratory conveyors

Technical documentation	SP01075
Document	B0023_EN.docx
Version	V2.02
Edition	30.10.2023

1. GENERAL	5
	5
1 2 SCOPE OF DELIVERY	5
1.3 ACCESSORIES	6
1.4 PROPER USE	6
1.5 LEGAL PROVISIONS	7
1.6 DEFINITION OF TERMS USED	7
2. SAFETY INSTRUCTIONS	8
2.1 OPERATING INSTRUCTIONS	8
2.2 SYMBOLISM	8
2.3 GENERAL SAFETY INSTRUCTIONS	8
2.4 DUTIES OF THE OPERATOR	9
2.5 STAFF	9
2.6 CONTROL UNIT	9
2.7 OPERATION	9
3. TECHNICAL DATA	10
	10
3.2 RATIO OF INPUT VOLTAGE TO OUTPUT VOLTAGE	10
3.3 OPERATING CONDITIONS	11
3.4 DIMENSIONAL DRAWING IP54	11
3.5 DIMENSIONAL DRAWING IP20	12
3.6 NOTE ON MEASURING THE LEAKAGE CURRENT	12
4. INSTALLATION	13
4.1 FMC - COMPLIANT WIRING	14
4.2 ELECTRICAL CONNECTION	15
4.2.1 TERMINAL ASSIGNMENT IP54	15
4.2.2 TERMINAL ASSIGNMENT IP20	18
4.2.3 PIN ASSIGNMENT PROFINET, ETHERNET IP	20
4.2.4 FUNCTION INPUTS AND OUTPUTS	21
5. DISPLAY MENU	23
5.2 EXPLANATION OF THE KEY FUNCTIONS	23 24
5.3 KEY OPERATION IN THE MENU STRUCTURE	24
5.4 CONTROL MODE	25
5.4.1 SWITCH AUTOMATIC RESONANCE SEARCH OFF / ON	26
5.5 OPEN LOOP OPERATION	27
5.6 OUTPUT VOLTAGE WAVEFORM	28
5.7 CONTINUOUS CURRENT OF THE MAGNET OUTPUT	28
5.8 LEVEL CONTROL	29
5.8.1 LEVEL CONTROL WITH ONE SENSOR	29
5.8.2 LEVEL CONTROL WITH TWO SENSORS	31
5.8.3 OPERATION WITH TWO SETPOINTS	33
5.9 OUTPUT AIR VALVE FOR SORTING AIR	35

5.10 MASTER/SLAVE 5.10.1 MASTER DEVICE SETTINGS 5.10.2 SLAVE UNIT SETTINGS 5.11 RS485 ADDRESS 5.12 DISPLAY CONTRAST 5.13 SWITCH OFF RUN AND OFF BUTTONS 5.14 CONTROLLER STATUS WHEN SWITCHED ON 5.15 SERVICE 5.16 PI CONTROLLER BEHAVIOUR 5.17 FUNCTION SETTINGS OF THE INPUTS EN. EX 15 5.18 FUNCTIONS FOR SPECIAL SERVICE CASES	36 36 37 37 37 38 39 40 40
6. SETTINGS VIA PARADESK SOFTWARE	42
6.1 SIMULTANEOUS COMMISSIONING OF SEVERAL UNITS 6.2 PERMANENTLY ACTIVE OUTPUTS FOR COMMISSIONING 6.3 CONTROL MODE 6.3.1 SOURCE OF THE VOLTAGE OR AMPLITUDE SETPOINT	42 43 44 45
 6.3.2 VIBRATION AMPLITUDE CO INTERNAL SETPOINT (SENS REF) 6.3.3 CONTROL OPERATION WITHOUT FREQUENCY READJUSTMENT 6.3.4 PI CONTROLLER BEHAVIOUR 6.4 RESONANCE SEARCH 	46 46 47 47
 6.4.1 SWITCH AUTOMATIC RESONANCE SEARCH OFF/ON 6.4.2 PARAMETER SETTINGS OF THE RESONANCE SEARCH 6.5 VIBRATION SENSOR 6.6 OPEN LOOP OPERATION 	47 47 48
6.7 OUTPUT VOLTAGE WAVEFORM 6.8 CONTINUOUS CURRENT OF THE MAGNETIC OUTPUT 6.9 GENERAL UNIT PARAMETERS	49 50 50 51
6.9.1 TIME SPAN IN THE EVENT OF AN AUTORESET MALFUNCTION6.9.2 SWITCH OFF THE AUTORESET FUNCTION6.9.3 ENABLE VIA FIELDBUS6.9.4 TIMEOUT FIELDBUS	51 51 51 51
 6.9.5 UNLOCKING THE DEVICE AFTER A SOFTWARE UPDATE 6.9.6 SWITCH OFF RUN AND OFF BUTTONS 6.9.7 SWITCH OFF MENU KEYS 6.9.8 OULCK JUMP FUNCTIONS OF THE DISPLAY MENU. 	51 52 52 52
6.9.9 CONTROLLER STATUS AT SWITCH-ON 6.10 MAGNETIC OUTPUT 6.10.1 START-UP AND SHUT-DOWN RAMP	53 54 54
 6.10.2 TIME CONSTANT OVERCURRENT SHUTDOWN 6.11 FREQUENCY MONITORING 6.11.1 FREQUENCY MONITORING WITH PRESET LIMIT VALUES: 6.11.2 FREQUENCY MONITORING WITH DETERMINATION OF NEW LIMIT VALUES: 	54 54 54 55
6.12 FUNCTIONS OF THE INPUTS AND OUTPUTS 6.12.1 ADJUSTING THE LEVEL OF THE INPUTS 6.12.2 ADJUSTING THE LEVEL OF THE OUTPUTS 6.12.2 ADJUSTING THE LEVEL OF THE OUTPUTS	55 55 56
6.13 OUTPUT VOLTAGE RANGE FOR ANALOG INPUT 6.14 PULSED OPERATION 6.15 LEVEL CONTROL	50 58 58 59
 6.15.1 Level control with one sensor 6.15.2 Level control with two sensors 6.15.3 Level control with timeout function switched off 6.16 Output air valve for sorting air 	59 61 63 63

6.17 UCM	64
6.17.1 LOGICAL LINKING OF THE INPUT SIGNALS FOR UCM MODULE	64
6.17.2 OPERATING MODE "STATE	66
6.17.3 OPERATING MODE "POSITIVE EDGE	67
6.17.4 LINK UCM OUTPUT WITH ENABLE	68
6.17.5 UCM WITH TIMEOUT FUNCTION SWITCHED OFF	68
6.17.6 UCM + PB	69
6.18 MASTER/SLAVE	71
6.18.1 MASTER UNIT SETTINGS	71
6.18.2 SLAVE UNIT SETTINGS	72
6.19 DISPLAY CONTRAST	72
6.20 INFO PARAMETER	72
6.21 MEASUREMENTS	73
6.21.1 EXPLANATION OF THE MEASURED VALUES	73
7. TROUBLESHOOTING AND FAULT CLEARANCE	75
7.1 RESETTING FAULT MESSAGES	75
7.2 POSSIBLE ERROR CAUSES	75
8. MAINTENANCE AND CLEANING	77
8.1 MAINTENANCE	77
8.2 CLEANING	77
9. MANUFACTURER'S DECLARATION	78
10. OPERATING SOFTWARE	79
11. LIST OF CHANGES	80
11.1 DOCUMENTATION	80
11.2 Software	81

1. General

Original Version

The original operating instructions is the German edition. This is legally binding in all legal matters.

Equipment

When you bought your machine, you chose a model with individual features.

These operating instructions also describe optional equipment and selected optional accessories offered by Mosca Elektronik.

Please understand that equipment variants are also described that you may not have selected.

Topicality

Mosca Elektronik's high level of safety and quality is guaranteed by continuous development of the design, equipment and accessories.

This may result in possible deviations between these operating instructions and your unit. Mosca Elektronik cannot exclude the possibility of errors.

Therefore, no claims can be derived from the information, illustrations and descriptions.

1.1 Brief description

NEWS:

- Automatic search for the resonance frequency of the connected vibration feeder
- **Adjustment of amplitude and frequency** during operation without interruption.
- **Master/slave operation:** A slave unit can be coupled to a master unit with adjustable phase angle.
- Frequency converter for vibratory conveyors
- Output frequency independent of the mains frequency
- Tuning of the mechanical spring system is not necessary
- Can be used worldwide without switching due to multi-voltage input
- Quiet conveying behaviour and reduced noise development of the conveyor (any output voltage curve shape can be stored)
- Constant delivery rate during mains voltage fluctuations
- Operation via display and keys
- Start/stop buttons for the conveyor in the operating display
- All settings possible without opening the housing
- Logic functions: Level control, sorting air control, Universal control module USM (e.g. Bunker control)
- Adjustable overload protection
- Setpoint setting: 0...10 (24)V, 0 (4)...20mA, potentiometer 10kΩ
- 2-pole mains switch
- High protection class IP54 for field installation
- Interface RS485

1.2 Scope of delivery

Included in the scope of delivery:

One control unit SP01075

After receipt of the delivery, check immediately whether the scope of delivery corresponds to the accompanying documents. The manufacturer does not accept any warranty for defects that are claimed subsequently.

1.3 Accessories

The following accessories are required for parameterising and monitoring the SP01075 control unit (see also chap. 10):

- PC with "ParaDesk" software. You can download ParaDesk free of charge at http://www.paradesk.de.
- Interface converter SP01056
- Mating connector, vibration sensor, cables, etc.

1.4 Proper use

- The SP01075 control unit is designed to be mounted on a machine for setting up a vibratory conveyor system.
- Vibratory conveyor systems with the SP01075 control unit, installed according to the specifications of the CE-typical directives, comply with the EC directive EMC
- The CE-typical systems with this control unit are intended
 for operation on public and non-public networks
 for use in the industrial sector.
- The control unit is not a household appliance, but is intended for setting up vibratory conveyor systems for commercial use.
- The control unit itself is not a machine in the sense of the EC Machinery Directive.

Only operate the control unit under the operating conditions prescribed in these operating instructions.

Observe the instructions in these operating instructions. This means:

Read the operating instructions carefully before starting work. Keep the operating instructions near the control unit.

1.5 Legal provisions

Liability

The information, data and notes given in these operating instructions were up to date at the time of printing. No claims can be made based on the information, illustrations and descriptions in these operating instructions for control units of the SP01075 series that have already been delivered.

The procedural notes and circuit sections shown in these operating instructions are suggestions whose transferability to the respective application must be checked. Mosca Elektronik und Antriebstechnik GmbH accepts no liability for the suitability of the procedures and circuit suggestions given.

No liability is accepted for damage and operational disruptions caused by:

- Disregarding these operating instructions
- Unauthorised modifications to the control unit
- Operating errors
- Improper work on and with the control unit

Warranty

Report warranty claims to the manufacturer immediately after the defect has been detected. The warranty expires in the event of:

- improper use of the control unit
- improper work on and with the control unit

1.6 Definition of terms used

Qualified staff

Qualified personnel are persons who, due to their training, experience, instruction as well as knowledge of relevant standards and regulations, accident prevention regulations and operating conditions, have been authorised by the person responsible for the safety of the installation to carry out the respectively required activities and who are able to recognise and avoid possible dangers.

(Definition for skilled workers according to IEC 364)

Operator

Operator is any natural or legal person who uses the control unit or on whose behalf the control unit is used.

2. Safety instructions

2.1 Operating instructions

These operating instructions are intended for safe working on and with the control unit. They contain safety instructions that must be observed.

In addition to the basic safety instructions in this chapter, the safety instructions in the continuous text must also be observed.

These safety instructions do not claim to be complete. If you have any questions or problems, please contact the manufacturer.

All persons working on and with the control unit must have the operating instructions available when carrying out their work and must observe the information and notes relevant to them.

The operating instructions must always be complete and in a perfectly legible condition.

2.2 Symbolism

In this manual, important explanations are highlighted with the following symbols:

<u>Caution</u>: This statement indicates hazards that may result in personal injury or property damage.

Attention required / Check: Please pay special attention to the situation described.

Information: Here you can find further information about the product.

2.3 General safety instructions

The control unit corresponds to the state of the art at the time of delivery and is generally considered to be safe to operate. The control unit may be dangerous if:

• unqualified personnel work on and with the control unit,

• the control unit is used improperly.

Then there is danger for:

- People
- the control unit
- other tangible assets of the operator.

The control units must be designed in such a way that they fulfil their functions and do not cause any danger to persons when properly installed and used for their intended purpose in fault-free operation. This also applies to the interaction of the control unit with the overall system.

Take additional measures to limit the consequences of malfunctions that may cause danger to persons:

 other independent devices which safeguard against possible malfunctions of the control unit.

- Electrical or non-electrical protective devices (e.g. interlocking or mechanical locks)
- system-wide measures

Take appropriate measures to ensure that no material damage occurs in the event of faults in the control unit.

2.4 Duties of the operator

The operator or his safety representative is obliged to:

- monitor compliance with all relevant regulations, notices and laws,
- ensure that only qualified personnel work on and with the control unit,
- ensure that personnel have the operating instructions available for all relevant work; and
- prohibit unqualified personnel from working on and with the control unit.

2.5 Staff

Only qualified personnel may work on and with the control unit.

2.6 Control unit

Only operate the control unit when it is in perfect condition. The permissible operating conditions and performance limits must be observed.

Retrofitting, modifications or conversions of the control unit are generally prohibited. In any case, they require consultation with the manufacturer.

The control unit is a piece of equipment for use in industrial systems. During operation, this equipment has dangerous, live parts. During operation, all covers must therefore be in place to ensure protection against accidental contact.

2.7 Operation

The control unit generates heat during operation. Depending on the operating conditions, there may be a risk of burns if the housing is touched. Keep a sufficient safety distance from combustible materials.

3. Technical data

3.1 Technical data

Electrical parameter	Unit	Value
Input voltage	VAC	100240 +-10%
Input current at 110/230VAC and 10A output current *1	A _{AC}	5 / 2,5
Output frequency	Hz	5 300
Output continuous current *2	A _{AC}	10
Output power	VA	2200
Analog inputs		2 units, level configurable, Can also be used as digital input
Digital inputs		3 units
Digital outputs		4 units + switching
Power supply for ext. consumer		24V / 100mA
Ambient temperature	°C	070 (power reduction of 2%/K)
Storage temperature	°C	-10 80
Humidity	%	max. 80, non-condensing
Protection class		IP20, IP54 depending on version
Installation height	m	1,000m (>1,000m power reduction of 1% /100m)

^{*1} Input current is smaller than the output current because of the inductive load. A large part of the output power is reactive power.

^{*2} The unit is rated at 10A, depending on the cooling surface, ambient temperature and installation height, the current must be reduced. See also Chap. 3.3

3.2 Ratio of input voltage to output voltage

There is no PFC unit in the device. This means that the possible output voltage depends on the input voltage.

In addition, output voltage depends on the selected waveform. Below is a table for a better overview:

Input voltage		Output voltage
110 V _{AC} / 60 Hz	Sine wave:	103 V _{AC}
	Sine with 3rd harmonic:	118 Vac
230 V _{AC} / 50 Hz	Sine wave:	208 V _{AC}
	Sine with 3rd harmonic:	239 V _{AC}

3.3 Operating conditions

At installation altitudes above 1000m or at high temperatures, reduce the output power of the unit according to the diagrams below.

The characteristic curve refers to the unit with free-standing base plate.

If the unit is mounted with the base plate on a heat dissipating surface, the characteristic curve shifts upwards (see additional heat sink).

The max. continuous current is limited to 10A.

3.4 Dimensional drawing IP54

3.5 Dimensional drawing IP20

3.6 Note on measuring the leakage current

The total leakage current is composed of the leakage current of the Y-capacitors and a resistor between UZK and GND, cf. the following sketch.

4. Installation

- Do not exceed the permissible range of the operating ambient temperature (see Chap. 3.2)
- The control unit contains electrostatically sensitive components. Before carrying out assembly and service work in the area of the connection terminals, the personnel must free themselves from electrostatic charges. Discharge can be achieved by first touching an earthed metal surface.
- The appropriate line protection fuse is required to protect the supply line
- Setpoint inputs must be routed with shielded cables.
- Generously dimension the cable cross-sections accordingly!
- Observe the locally applicable safety provisions

4.1 EMC - compliant wiring

To ensure electromagnetic compatibility (EMC) in your control cabinets in electrically harsh environments, the following EMC rules must be observed during design and assembly:

- All metallic parts of the control cabinet must be connected to each other over a wide area and with good conductivity. (Not lacquer on lacquer!) If necessary, use contact or scratch washers. The cabinet door must be connected to the cabinet via the earth straps (top, middle, bottom) as short as possible.
- Signal lines and power cables must be laid spatially separated from each other to avoid coupling distances. Minimum distance: 20 cm.
- ♦ If possible, only run signal lines from one level into the cabinet. Non-shielded lines of the same circuit (outgoing and return conductors) should be twisted if possible.

- Contactors, relays and solenoid valves in the cabinet, if necessary in neighbouring cabinets, are to be wired with extinguishing combinations; e.g. with RC elements, varistors, diodes.
- The shields of shielded cables must be connected to earth¹ on both sides (source and destination), over a large area and with good conductivity. In case of poor equipotential bonding between the shield connections, an additional compensating conductor of at least 10 mm² must be laid parallel to the shield to reduce the shield current.
- Do not lay wiring freely in the cabinet, but route it as close as possible to the cabinet housing or to mounting plates. This also applies to reserve cables. These must be earthed at least at one end, better at both ends (additional shielding effect).
- Unnecessary cable lengths are to be avoided. Coupling capacitances and inductances are thus kept small.
- The shielding of supply lines must be connected to enclosure ground. In the area where cables are routed into the enclosure, the insulation must be removed to expose the shielding braid. The shielding braid must not be damaged when uncovering. The cable must be routed at the exposed point through terminals or clamping yokes connected to earth.
- Use high quality cables with low shield capacitance.
- Lay shielded cables without interruption. Avoid unnecessary clamping points and connectors. Make sure that there is a continuous shield even with plug-in connectors.

¹Earth is generally defined as all metallically conductive parts that can be connected to a protective earth conductor. e.g. cabinet housing, motor housing, foundation earth, etc.

4.2 Electrical connection

4.2.1 Terminal assignment IP54

Overview I/O	
Function	Connector pin
IN1	X3-4
IN2	X4-4
IN3/OUT3	X5-4
IN4	X3-2
IN5	X4-2
OUT1	X6-4
OUT2	X6-2
OUT4	X5-2, X7

X1 compatible with HAN3A 3+PE pin insert (M)		
Pin	Function	Comment
1	L	Mains input
2	N	Mains input
3	NC	
PE	PE	Mains input

X2 compatible with HAN3A 3+PE socket insert (F)		
Pin	Function	Comment
1	Magnet AC1	Magnet connection
2	Magnet AC2	Magnet connection
3	NC	
PE	PE	Magnet connection

X3 M12 socket 4-pin A-coded		
Pin	Function	Comment
1	24V	Supply
2	IN4	Signal input
3	GND	Supply
4	IN1	Signal input

X4 M12 socket 4-pin A-coded		
Pin	Function	Comment
1	24V	Supply
2	IN5	Signal input
3	GND	Supply
4	IN2	Signal input

X5 M12 socket 4-pin A-coded		
Pin	Function	Comment
1	24V	Supply
2	OUT4	Signal output
3	GND	Supply
4	IN3, OUT3	Signal input, signal output

X6 M12 socket 4-pin A-coded		
Pin	Function	Comment
1	24V	Supply
2	OUT2	Signal output
3	GND	Supply
4	OUT1	Signal output

X7 M12 connector 4-pin A-coded		
Pin	Function	Comment
1	СОМ	Relay contact OUT4
2	-	
3	-	
4	NO	Relay contact OUT4

X8 M8 connector 4pol.

Pin	Function	Comment
1	-	
2	GND	RS485
3	A	RS485
4	В	RS485

4.2.2 Terminal assignment IP20

Connector X1		
Pin	Function	Comment
L	L	Mains input
Ν	N	Mains input
PE	PE	Mains input

Connector X2		
Pin	Function	Comment
1	Magnet AC1	Magnet connection
2	Magnet AC2	Magnet connection
PE	PE	Magnet connection

Connector X6		
Pin	Function	Comment
1	GND	Power supply Reference
2	IN1	Signal input
3	IN2	Signal input
4	IN3	Signal input
5	IN4	Signal input
6	IN5	Signal input
7	OUT1	Signal output
8	OUT2	Signal output
9	OUT3	Signal output
10	OUT4	Signal output
11	24V	Power supply

Connector X7		
Pin	Function	Comment
1	СОМ	Relay contact OUT4
2	NO	Relay contact OUT4

Connector X8		
Pin	Function	Comment
1	A	RS485
2	В	RS485
3	GND	RS485

4.2.3 Pin assignment Profinet, Ethernet IP

4.2.3.2 Front view IP54

4.2.3.3 Technical data:

Parameter	Unit	Value
Supply voltage	VDC	1830
Current consumption	mADC	100
Isolation		The bus interface is to the unit
		Potentially isolated
Bus connection IP20		RJ45 sockets
Bus connection IP54		M12 socket 4-pin D-coded

4.2.3.1 X20 Bus supply voltage:

Function	Pin Terminal strip	Pin M12 Plug A-coded
24V bus	2	1
GND Bus	1	3

4.2.3.2 X21 Port1, X22 Port2

Signal	Pin RJ45	Pin M12
TD+	1	1
TD-	2	3
RD+	3	2
RD-	6	4

4.2.3.3 LEDs:

Ref.	Function	Comment
H21	Link/Traffic Port 1	OFF=no connection to the bus
H22	Link/Traffic Port 2	ON= Connection to the bus
		FLASHES=Data packets are sent/received

4.2.4 Function inputs and outputs

4.2.4.1 Possible function assignments

The function outputs or inputs can be assigned either as analog input, digital input or digital output, depending on the parameter setting (cf. chapter 6).

Not every function output or input can have all three variants. The following overview shows the different assignment options:

Designation	Analog IN (AIN)	Digital IN (DIN)	Digital OUT (DOUT)
IN1		Х	
IN2		Х	
IN3		Х	
IN4	X	Х	
IN5	X	Х	
OUT1			Х
OUT2			Х
OUT3			Х
OUT4			Х

Note: If the connections IN4 and IN5 are used as DIN, they are still read in analog and digitised with switching thresholds for HIGH and LOW.

4.2.4.2 Electrical level definition of the digital inputs (IN1 to IN3):

Parameter	Value	Unit
V _{in,low}	< 5	V
V _{in,high}	> 15	V
Input impedance	4	kΩ

4.2.4.3 Electrical level definition of the analog inputs (IN4 and IN5):

Parameter	Value	Unit
Vin,Iow	< 5	V
Vin,high	> 15	V
Analog input voltage range	024	V
Input impedance	100k/500	Ω

4.2.4.4 Electrical level definition of the outputs (OUT1...OUT4):

Parameter	Value	Unit
min. V _{out,high} with 24V supply	>23(at 1.000mA)	V
Low	open	

The outputs are conditionally short-circuit proof.

The internal 24V power supply delivers max. 100mA. If more current is to be drawn from the outputs in total, the power supply must be supported externally. The external voltage can be connected to the 24V and GND terminals. Attention! Total current max. 2A, provide appropriate fuse protection on the external power supply.

4.2.4.5	Level	definition	output	OUT4	on X7
1.2.1.0	20101	aommaon	ouiput	0011	011711

Parameter	Value	Unit
Active	COM - NO connected	-
max. switching voltage DC	30	V
max. switching voltage AC	250	V
Max. switching current with resistive load	2	А
Max. switching current with inductive load	1,5	A

4.2.4.6 Terminal functions

- Input terminal functions that are not used (configured) are passive. The input functions can be assigned to several terminals simultaneously. The terminals are then OR-linked.
- All digital input functions can be inverted.
- Output terminal functions can be assigned to several terminals simultaneously to increase the max. current.
- The output terminal functions can be inverted.

5. Display menu

→ The pin assignment is described in Chap. 4.2.

<u>Caution</u>: When commissioning the machine for the first time, it must be ensured that faulty vibration start-up is possible due to installation or parameterisation errors. Measures must be taken against this to exclude hazardous situations (e.g. mechanically disconnect vibration from the machine).

Please familiarise yourself with chap. 5 "Display menu" and/or chap. 6 "Settings via ParaDesk software" before operating a unit for the first time.

5.1 Status messages in the display

The display shows the current status of the unit, or error messages (cf. Chap. 7):

Display	Description
Status Nready	Not Ready
Status Lock	Not Ready
Status Ready	Ready
Status Run	Enabled
Status Scan	Resonance search
Status UV	F1 Undervoltage
Status OV	F2 Overvoltage
Status OT	F3 Overtemperature
Status OC	F4 Overcurrent
Status Outstage	F5 power amplifier
Status Timeout	F6 Timeout
Status SNES	F7 Vibration sensor
Status Scanfail	F8 Scan error
Status Bus module	F9 Bus module
Status f Fail	F10 Frequency monitoring

5.2 Explanation of the key functions

Use the menu buttons to navigate through the structure of the display menu and make changes.

5.3 Key operation in the menu structure

Pressing the Enter key opens the menu.

With the and one of the submenu items can now be selected.

To open the selected submenu, press the Enter key.

To change settings in the submenu, select the Enter key, then the changeable value flashes

Change the values or the setting using the and button

NOTE: When a parameter is flashing, the values are changed live, the unit operates with the set values.

Confirm the change with the Enter key

or discard the change with the ESC key.

To go from the submenu to a higher-level menu, select the ESC key.

Quick jump to the menu:

In order to be able to call up frequently required parameters quickly, a direct jump to freely selectable menu items can be made on the and keys with the help of the ParaDesk software. Cf. chap. 6.9.8

Pressing the • or key in the status level switches directly to this parameter in the menu structure.

From here, the operation is as described above.

By default, the key is pre-assigned with the quick jump function to "Sens Ref" (setpoint for the swing amplitude in gss). By default, the +key has no preassignment.

5.4 Control mode

Note: This additional function can only be used if your control unit has this software function.

When control mode is activated, the amplitude as well as the resonance frequency is constantly measured and readjusted <u>without</u> interrupting the control mode. Cf. also Chap. **Fehler! Verweisquelle konnte nicht gefunden werden.**

Only one parameter (Sens.Ref) must be set to adjust the flow rate. The controller determines all other values independently.

To find the right amplitude (Sens.Ref), 20gss is suitable at the beginning. If after two to three minutes the material is ejected too quickly, you can reduce the amplitude accordingly (or increase it in the other case).

Note: A vibration sensor is required for control operation.

This must be connected to an analog input (often X3, cf. chap. 4.2). The parameter group Sensor settings is already set for the vibration sensor SP01144. If you are using a different vibration sensor, adjust the values accordingly via the ParaDesk software, cf. Chap.6.5).

This ensures that the vibratory feeder always operates exactly at the resonance point with a constant vibration amplitude, regardless of the mass of the vibratory feeder or the quantity of parts to be conveyed.

The advantage of this control is the efficient energy absorption and thus low heat generation in the magnet. Due to the constant readjustment of the system, only the smallest possible amount of energy is required to operate the vibratory feeder. In addition, this ensures very low-noise and gentle operation.

The unit can also be parameterised so that the vibration amplitude only works via voltage readjustment without frequency readjustment.

Purely manual controlled operation is also possible.

The operating modes of the controller may only be changed when the controller is switched off (OFF):

Display	Keys	Description
Status Ready	1	Open menu structure
CONTROL	•	scroll to CONTROL and open
Control ON	(I)	Check whether control mode is switched on, otherwise switch over and confirm.
Sens.Ref xx.xg	•	turn over to Sens.Ref and select (value flashes)
Sens.Ref 15.0g	• • •	Select and confirm the desired amplitude (internal setpoint) with plus and minus.
Status Ready	ESC ESC	back to the top

5.4.1 Switch automatic resonance search off / on

When starting the vibratory feeder, the resonance search determines the natural frequency of the unknown system. A "gong" sounds and the vibratory feeder starts with the determined natural frequency.

Since the last output frequency is saved in the event of an abort, you can switch off the automatic resonance search after successful commissioning. When restarting, you can therefore restart directly with the last frequency without resonance search.

Note: For the resonance search, the parameter of the max. magnetic current must be set according to its data sheet. Cf. chap. 5.7

Display	Keys	Description
Status Ready	1	Open menu structure
CONTROL	•••	scroll to CONTROL and open
SCAN ON	II	Scroll backwards to scan Select (text flashes)
SCAN OFF	+ / 1	Use Plus or Minus to switch the scan search function on or off. and confirm
Status Ready	ESC ESC	back to the top

5.5 Open loop operation

Open loop controlled operation is also possible with this unit.

The operating modes of the controller may only be changed when the controller is switched off (OFF):

Display	Keys	Description
Status Ready	(T)	Open menu structure
CONTROL	•••	continue browsing Open CONTROL
Control OFF	(†) (†)	check whether the controller function is switched off, otherwise open for editing with and switch over with.
Control OFF	(I)	confirm with Enter.
Status Ready	ESC ESC	back to the top

Now select the desired output frequency and voltage for open loop operation.

Display	Keys	Description
Status Ready	1	Open menu structure
POWEROUT	(I)	Open POWEROUT
Vout int xxxV	+ /	Select (value flashes) Select the desired output voltage with plus and minus.
Vout int 101.5V	1	confirm the selected output voltage
Freq. xxxHz	\bullet	Scroll to the output frequency Select (value flashes)
Freq. 50.5Hz	+ / 1	Use plus and minus to select the desired output frequency Confirm with Enter
Status Ready	ESC ESC	back to the top

5.6 Output voltage waveform

The sine waveform with 3rd harmonic is preset. If you want a different output waveform of the voltage, you can select sine waveform or create your own (tab). Please contact the manufacturer for this.

Display	Keys	Description
Status Ready	1	Open menu structure
POWEROUT		Open POWEROUT
Curve	÷.	continue browsing Open curve for editing (text flashes)
Curve SIN 3.OW	\bullet	Select desired waveform (e.g. sine with 3rd harmonic) and confirm
Status Ready	ESC ESC	back to the top

5.7 Continuous current of the magnet output

The continuous current of the magnet output "Current" corresponds to the effective continuous current of the vibration feeder output.

To ensure overloading of the vibrating magnet, the maximum continuous output current for the magnet is set in the "Current" parameter. 6A is used as the default value. If the magnet you are using has a different max. rated current, you can adjust it accordingly in this parameter.

Display	Keys	Description
Status Ready	1	Open menu structure
POWEROUT		Open POWEROUT
Current	•••	continue browsing Open Current
Current 6,00A	() () ()	Select the desired output current and confirmed
Status Ready	ESC ESC	back to the top

5.8 Level control

Note: This additional function can only be used if your control unit has this software function.

5.8.1 Level control with one sensor

It is possible to realise a level control via the input Sensor1 as well as the switch-on and switch-off delay of the conveyor.

The conveyor is switched on when the sensor is passive and the switch-on delay has expired. The conveyor is switched off when the sensor is active and the switch-off delay has expired. Thus, the level of the conveyed material oscillates around the sensor. Level changes during the delay times reset them to 0.

Note: A release must be active. The enable can be activated either by pressing "RUN" on the unit or by an external input, if parameterised.

In the display menu, the operating mode of Level Control (LC) must be set to "1 sensor on/off" ("1S 0-1"):

Display	Keys	Description
Status Ready		Open menu structure
LC	•	continue browsing Open LC (Level Control)
Mode OFF		Open for editing (text flashes)
Mode 1S 0-1	(Select operating mode 1 sensor on/off and confirm
ON-del. xxxms	(+)	turn over to ON-del. (ON-delay) and open
ON-del. 30ms	•/• •	Select the desired switch-on delay and confirm
OFF-del. xxxms	()	turn over to OFF-del. (OFF-delay) and open
OFF-del. 30ms	• / •	Select the desired switch-off delay and confirm
Timeout Oms	•	turn over to Timeout and open
Timeout 20ms	• / • •	If necessary, select the desired time step Timeout and confirm
Status Ready	ESC ESC	back to the top

The max. switch-on time of the conveyor can be monitored via a separate time stage Timeout.

If this function is activated, the conveyor switches off after this time has elapsed. This function can also be parameterised to a signal output.

A parameter value of zero switches off the monitoring.

Example diagram:

5.8.2 Level control with two sensors

In conjunction with two material sensors, a material level is stored within a filling section. The conveyor is only switched on after the switch-on delay when both sensors are low (no material being conveyed).

If both sensors are high (material present), the conveyor is switched off after the switchoff delay.

Note: A release must be active. The enable can be activated either by pressing "RUN" on the unit or by an external input, if parameterised.

For this purpose, the operating mode "2 sensor on/off" must be activated in the parameter group "FSS".

Display	Keys	Description
Status Ready	()	Open menu structure
LC	• 1	continue browsing Open LC (Level Control)
Mode OFF	1	Open for editing (text flashes)
Mode 2S 0-1	÷.	Select operating mode 2 sensor on/off and confirm
ON-del. xxxms	(†) (†)	turn over to ON-del. (ON-delay) and select (value flashes)
ON-del. 30ms	+/•	Select the desired switch-on delay and confirm
OFF-del. xxxms	(†	turn over to OFF-del. (OFF-delay) and select (value flashes)
OFF-del. 30ms	() () ()	Select the desired switch-off delay and confirm
Timeout Oms	÷	scroll to Timeout and check if value is zero (change accordingly if nec- essary)
Status Ready	ESC ESC	back to the top

Example diagram:

5.8.3 Operation with two setpoints

Instead of controlling the fill level by switching the conveyor on or off, the output voltage of the conveyor can alternatively be switched between two values in open loop operation. The conveyor is then always active, only the output voltage is changed depending on the state of the level logic.

Note: A release must be active. The enable can be activated either by pressing "RUN" on the unit or by an external input, if parameterised.

For this purpose, the operating mode "1 sensor low/high" or "2 sensor low/high" must be activated in the parameter group "FSS".

Display	Keys	Description
Status Ready	(T)	Open menu structure
LC	\bullet (1)	continue browsing Open LC (Level Control)
Mode OFF	T	Open for editing (text flashes)
Mode 1S L-H	+ + +	Select operating mode 1 sensor low/high (or for sensors S2 L-H) and confirm
V min xxxV	••••	Go to Voltage setpoint low and open
V min 50.0V	• () ()	select the desired value for the voltage setpoint low and confirm
V max xxxV	•	Go to Voltage setpoint high and open
V max 100.0V	() () ()	select the desired value for the voltage setpoint high and confirm
CONTROL		Go from the submenu and scroll to Control
Control OFF	(I)	open and check whether control mode is switched off, otherwise switch over and confirm
Status Ready	ESC ESC	back to the top

Example diagram:

5.9 Output air valve for sorting air

Note: This additional function can only be used if your control unit has this software function.

To support part transport by air, the "Air" output can be used to control an air valve. When the conveyor is released, the "Air" output is switched on first and the output voltage of the conveyor is ramped up with a time delay.

The "Air" output remains active for a follow-up time after the conveyor has been switched off.

The run-up and run-down times can be set separately.

Note: To activate the sorting air, an output must be assigned with the function "Air".

Display	Keys	Description
Status Ready	1	Open menu structure
AIR	÷ (1)	continue browsing Open "AIR"
Pretime xxxms	()	Open Pretime
Pretime 30ms	+ () ()	Select the desired sorting air lead time and confirm
Postime xxxms	(†	turn over to Postime (overrun time) and open
Postime 30ms	• / I	Select the desired overrun time and confirm
Status Ready	ESC ESC	back to the top

Example diagram:

5.10 Master/Slave

Note: This additional function can only be used if your control unit has this software function.

It is possible to operate several control units in a network. For this purpose, e.g. one control unit can be parameterised as master and many other units as slaves. The master unit sets the frequency for the slave units via synchronous pulses.

A unit parameterised as a slave will only switch on (RUN) when synchronous pulses from the master are applied to its slave pulse input.

If there are no more synchronous pulses (master off), the unit switches back to STOP after a short delay.

Attention: A maximum of 10 units can be operated by one master on one bus.

Note: If a unit is parameterised as a slave, it can only be operated with amplitude control, but not with frequency control. The frequency is fixed by the master. The master, however, can perform amplitude and frequency control.

Attention: If the unit is configured for master/slave operation, the output OUT3 or the input IN3 is permanently required for this operation. It is not possible to use the two IOs for other functions in this mode.

5.10.1 Master device settings

You can order the master unit directly as a master or you can select the function for output OUT3 with the help of the ParaDesk software (cf. Chap. 6.18.16.18).

5.10.2 Slave unit settings

The slave function can be switched on and off via the display menu. You can set a deviation of the phase position to the master unit via the ParaDesk software (cf. Chap. 6.18.2)

Display	Keys	Description
Status Ready	1	Open menu structure
CONTROL	• •	continue browsing Open CONTROL
Slave OFF		turn back and open slave
Slave ON	• / (]	Switch on slave function and confirm
Status Ready	ESC ESC	back to the top

5.11 RS485 address

The address of the controller on the RS485 bus can be changed. This makes it possible to connect a PC with several units during commissioning and to select the units accordingly via the ParaDesk software. Cf. chap. 6.1

Note: After this value is changed, communication with ParaDesk will stop and must be re-established with the new address.

Display	Keys	Description
Status Ready	(t)	Open menu structure
SETTINGS		turn back Open SETTINGS
RS485 Ad 1	() ()	continue browsing and RS485 Ad open
RS485 Ad 1	• • •	Possibly change the number of the address and confirm
Status Ready	ESC ESC	back to the top

5.12 Display contrast

The brightness of the display can be adjusted variably.

Display	Keys	Description
Status Ready	1	Open menu structure
SETTINGS		turn back Open SETTINGS
Contrast 3000	÷	continue browsing and open Contrast
Contrast 2500	+ 	Change contrast as desired and confirm
Status Ready	ESC ESC	back to the top

5.13 Switch off RUN and OFF buttons

If, after commissioning, the control unit is enabled via a corresponding input, it is possible to switch off the function of the RUN and OFF buttons.

Display	Keys	Description
Status Ready	1	Open menu structure
SETTINGS		turn back Open SETTINGS
RUN/OFF Pon OFF	• • •	continue browsing and open RUN//OFF
RUN/OFF OFF		Select OFF and confirm
Status Ready	ESC ESC	back to the top

5.14 Controller status when switched on

The default setting is that the output signal for the vibrating magnet is switched off after starting the unit. Cf. chap. 6.9.9

Pon OFF (with "Power on" the output is "OFF"):

This state can also be reversed so that the output signal is already switched on after starting the unit. Cf. chap. 6.9.9

Pon ON (with "Power on" the output is "ON"):

Note: For this state, the RUN/OFF buttons cannot be switched passively.

Display	Keys	Description
Status Ready	()	Open menu structure
SETTINGS		turn back Open SETTINGS
RUN/OFF Pon OFF	•••	continue browsing and open RUN/OFF
RUN/OFF Pon ON	•	Select Pon ON and confirm
Status Ready	ESC ESC	back to the top

5.15 Service

The Service submenu displays various parameters, states and information about the unit.

Display Display	Keys	Description
Status Ready	1	Open menu structure
SERVICE	11	turn back Open service
Vout act x.xV	•	Displays the current output voltage
lxt x.xxA	•	the output current is calculated with a time constant. If the value exceeds the continuous current limit, the unit switches off.
Sens act x.xg	٠	the actual value of the vibration sensor shows the current measured value of the vibration sensor
Temp xx.x °C	٠	Temperature at the bottom of the unit. If a critical limit temperature is exceeded, the unit switches off.
VDC Link xxx.xV	٠	Load voltage in the DC link is continuously monitored. In the event of a fault, the output stage is locked, the control unit switches off and an overvoltage or undervoltage fault is generated.
Input xxxxx	•	Show the logical status of the inputs or outputs. If an analog function
Output xxxx	۲	to left (i.e. IN1 or OUT1 is on the right).
ON-Time xxxh	٠	Total operating hours counter. Counts the operating time of the unit. It is active as soon as the unit is connected to the mains voltage and switched on.
RUN-Time xxxh	٠	Operating hours in conveying mode. This only counts the effective running time of the conveyor.
FW xx.xx	•	Firmware version
HW xx.xx	•	Hardware version
Freq.act xx.xHz	•	Displays the current output frequency
Status Ready	ESC ESC	back to the top

5.16 PI controller behaviour

The behaviour of the PI controller is optimally set for the most common applications when it is delivered.

For very special applications, an adjustment of the controller behaviour may be useful. In such cases, please contact the manufacturer.

Display	Keys	Description
Status Ready	(I)	Open menu structure
CONTROL	•••	continue browsing Open CONTROL
Cont. P 10	••	continue browsing Proportional behaviour of the controller (default value: 10)
Cont. I 1000	•	continue browsing Integral behaviour of the controller (default value: 1000)
Status Ready	ESC ESC	back to the top

5.17 Function settings of the inputs En. Ex 1...5

The setting of the enables En. Ex 1...5 (enable external) overwrite the current function. Only the input functions "no function" [OFF] and "enable 1...5" [ON] can be selected via the display menu. Other terminal functions can only be selected with the ParaDesk software.

It is imperative to note that settings are lost when changing preset functions (e.g. the vibration sensor). These must be restored via the operating software.

We therefore recommend that these settings be made via the ParaDesk software if possible. Cf. chap. 6

Display	Keys	Description
Status Ready	Ð	Open menu structure
SETTINGS		continue browsing Open SETTINGS
En. Ex 1 OFF	•••	turn over to EN. EX 1 5 and open
Cont. I 1000	() ()	Select OFF or ON and confirm
Status Ready	ESC ESC	back to the top

5.18 Functions for special service cases

There are three parameters that are only needed in special service cases.

Display Display	Keys	Description
Status Ready	1	Open menu structure
SETTINGS		turn back Open SETTINGS
Para 50	•	turn back
Para no.	•	turn back
Pro.Mode	•	turn back
Status Ready	ESC ESC	back to the top

6. Settings via ParaDesk software

The "ParaDesk" operating software is required to parameterise and monitor the SP01075 control unit.

The latest version can be downloaded free of charge from the homepage <u>http://www.pa-radesk.de.</u>

Note: Please refer to the ParaDesk operating instructions for installation and operation of the software. These can also be found at the above Internet address.

6.1 Simultaneous commissioning of several units

The address of the controller on the RS485 bus can be changed. This makes it possible to connect a PC with several units during commissioning and to select the units accordingly via the ParaDesk software.

Parameter	Value Unit	
General device parameters		-
110 RS485 address (RS485 Ad)	2	•

2

Note: After this value is changed, communication with ParaDesk will stop and must be re-established with the new address.

After ParaDesk has been rebuilt with the new address, the number of connected devices appears in ParaDesk:

🗾 ParaDesk			
<u>File Edit Options Device Language Help</u>			
📂 💾 💿 🐝 🚍 🔍 Device (2)			
	Settings:		
Parameter:	Value:		
🖃 🥥 SP01075	CONNECTED: COM 5		
···· O Firmware (FW):	311		
Hardwarestatus (HW):	1123		
E O Parameter:			
···· O 001 Gerätekennung	170		
···· O 003 Hardwarestatus (HW)	1123		
… o 004 Betriebsstundenzähler gesamt (ON-Time)	200.917		
… O 006 Betriebsstunden im Förderbetrieb (Run-Time)	9.273		
	1701001234		
🖻 🔘 Testparameter			
····· 0 127 Test Ausgänge	Normalbetrieb		
···· O 126 Strom Abgleich	Normalbetrieb		
····· 0 125 Test Freigabe	Normalbetrieb		
0 112 i_1801	0		
0 113 i_1802	0		
0 114 i_1803	0		
└o 115 i_1804	0		
····· O 139 Analogreferenz Abgleich	3.2549		
- 0 134 Offset Strommessung	71		

When you click on Device (x), the connected devices appear for selection for further processing:

🗾 ParaDesk			
<u>File Edit Options Device Language Help</u>			
📂 💾 💿 🛸 🚍 💽 🔤	vice (2)		
s	P01075 (FW:311 COM:3 [ADR:2])		
\$	GP01075 (FW:311 COM:5 [ADR:1])		
Parameter:			
···· O Firmware (FW):			
····· O Hardwarestatus (HW):			
E O Parameter:			
···· O 001 Gerätekennung			
····· O 003 Hardwarestatus (HW)			
···· O 004 Betriebsstundenzähler gesamt (ON-Time)			
… o 006 Betriebsstunden im Förderbetrieb (Run-Time)			

To check which number the respective unit has, you can call up the RS485 address via the display menu. Cf. chap. 0

6.2 Permanently active outputs for commissioning

The outputs can be set to "permanently active". This serves as an aid during commissioning.

Here at the example of OUT1:

Parameter	Value Unit
 Output functions 	
• 106 Output OUT1 Function	Continuously active

Continuously active ▼ No function ✓ **Continuously active** Ready Air Time-out Output on **Over-current** PB Out UCM output

6.3 Control mode

Note: This additional function can only be used if your control unit has this software function.

When control mode is activated, the amplitude as well as the resonance frequency is constantly measured and readjusted <u>without</u> interrupting the control mode.

The following flow chart shows how the control mode works.

Only one parameter RB Setpoint internal (Sens.Ref) must be set to adjust the flow rate. The controller determines all other values independently.

To find the right amplitude (RB setpoint internal), 20gss is suitable at the beginning. If after two to three minutes the material is ejected too quickly, you can reduce the amplitude accordingly (or increase it in the other case).

No Th

Note: A vibration sensor is required for control operation.

This must be connected to an analog input (often X3, cf. chap. 4.2). The parameter group Sensor settings is already set for the vibration sensor SP01144. If you are using a different vibration sensor, adjust the values accordingly via the ParaDesk software, cf. Chap.6.5).

This ensures that the vibratory feeder always operates exactly at the resonance point with a constant vibration amplitude, regardless of the mass of the vibratory feeder or the quantity of parts to be conveyed.

The advantage of this control is the efficient energy absorption and thus low heat generation in the magnet. Due to the constant readjustment of the system, only the smallest possible amount of energy is required to operate the vibratory feeder. In addition, this ensures very low-noise and gentle operation.

The unit can also be parameterised so that the vibration amplitude only works via voltage readjustment without frequency readjustment.

Open loop control operation is also possible.

The operating modes of the controller may only be changed when the controller is switched off (OFF):

For closed-loop operation, check whether the functions controller operation, frequency readjustment and resonance search are switched on, otherwise switch them on:

Parameter	Value	Unit		
 Controller operation CO (CONTROL) 				
083 CO on/off (Control)	on		on	V
104 Frequency control (Cont. f)	on		off	
••• 087 Search resonance frequency (Scan)	on		on ✓ on	

Note: For the resonance search, the parameter of the max. magnetic current must be set according to its data sheet. Cf. chap. 6.8

6.3.1 Source of the voltage or amplitude setpoint

The presetting for the vibration amplitude can be done via different sources. In order to determine the appropriate amplitude (Sens.Ref), it is advisable to set it to e.g. 20gss at the beginning. If after two to three minutes the material is ejected too quickly, you can reduce the amplitude accordingly (or increase it in the other case).

	6.	3.1	1.1	Vibration	amplitude	via	internal	setpoir
--	----	-----	-----	-----------	-----------	-----	----------	---------

Parameter Controller operation CO (CONTROL) 	Value	Unit	
••• 064 CO Setpoint source	CO interna	l setpoint	CO internal setpoint
			 ✓ CO internal setpoint IN4 IN5 CO bus setpoint
••• 086 CO Internal setpoint (Sens ref)	20	gss	♦ 20

Using the example of IN4:				
Parameter	Value	Unit		
 Controller operation CO (CONTROL) 				
••• 064 CO setpoint source	IN4		IN4	/
			CO internal setpoint ✓ IN4 IN5	
			CO bus setpoint	
○ Input functions				_
$\sim 0.00000000000000000000000000000000000$	Analog fund	tion	Analog function	/
			No function Reset fault Sensor 1 Sensor 2 Enable 1 Enable 2 PB upper PB lower UCM input 1 UCM input 2 ✓ Analog function Analog frequency set- ting	

6.3.1.2 Vibration amplitude over input

6.3.1.3 Vibration amplitude via BUS

Parameter	Value	Unit			
 ○ 064 CO setpoint source 	RB Setpoint b	us	СО	bus setpoint	
			✓	CO internal setpoin IN4 IN5 CO bus setpoint	t

6.3.2 Vibration amplitude CO Internal setpoint (Sens ref)

Adjusting the amplitude via the setpoint internally.

Parameter	Value	Unit	
 Controller operation CO(CONTROL) 			
••• 086 CO internal setpoint (Sens Ref)	20	gss	♦ 20

6.3.3 Control operation without frequency readjustment

For special applications, it may be useful to switch off the frequency readjustment. This way, the unit only adjusts the output voltage.

Parameter	Value	Unit			
• Control operation CO (CONTROL)	off		off	▼	
	UII		✓ off		
			on		

6.3.4 PI controller behaviour

The behaviour of the PI controller is optimally set for the most common applications when it is delivered.

For very special applications, an adjustment of the controller behaviour may be useful. In such cases, please contact the manufacturer.

Default values:			
Proportional behaviour of the controller:	10		
Integral behaviour of the controller:	1000		
Parameter	Value	Unit	
 Controller operation CO (CONTROL) 			
084 CO P-factor (Cont. P)	10		♦ 10
085 CO I-factor (Cont. I)	1000		▲ 1000

6.4 Resonance search

6.4.1 Switch automatic resonance search off/on

When starting the vibratory feeder, the resonance search determines the natural frequency of the unknown system. A "gong" sounds and the vibratory feeder starts with the determined natural frequency.

Since the last output frequency is saved in the event of an abort, you can switch off the automatic resonance search after successful commissioning. When restarting, you can therefore restart directly with the last frequency without resonance search.

Parameter	Value	Unit		
 Controller operation CO (CONTROL) 				
087 Search resonance frequency (Scan)	off		off	▼
			✓ off	
			on	

6.4.2 Parameter settings of the resonance search

When determining the natural resonance, after the vibration conveyor has been excited (the "gong" has sounded), the "number of synchronisation periods 182" is used after the "number of transient periods 181" in order to determine the resonance frequency with these values.

The preset values are suitable for the most common applications. If it takes too long after the "gong" to reach the actual resonance frequency by constant readjustment, an adjustment of these parameters might be useful. For very special applications, please contact the manufacturer.

Parameter	Value	Unit	
Control operation CO (CONTROL)			
181 Resonance search Numbers o	f transient periods 1		♦ 1
0 182 Resonance search Numbers o	f synchronization periods	2	♦ 2

6.5 Vibration sensor

A vibration sensor is required for closed loop control operation.

This must be connected to an analog input (frequently X3, cf. chap. 4.2). The parameter group Sensor settings is already set for the vibration sensor SP01144. If you are using a different vibration sensor, the parameters can be set to the respective sensor used.

Parameter	Value	Unit	
• Sensor settings ••• 101 Sensor monitoring lower limit	5	V	\$ 5
-•• 102 Sensor monitoring upper limit	11	V	♦ 11
0 162 Sensor sensitivity	300	mV/g	♦ 300

Specify the input of the vibration sensor (here using IN4 as an example):

Parameter	Value	Unit		
 Controller operation CO (CONTROL) 				
••• 078 CO Vibration sensor source	IN4		IN4	▼
			None	
			l ✓ IN4	
			IN5	

Note: Conversion of digits into physical acceleration g depends on the vibration sensor used and the scaling of the corresponding analog input.

Recommended values when using the SP01144 sensor on input IN4

Parameter	Value	Unit	
• Functions inputs ••• 055 IN4 function	Analog fund	ction	Analog function
			No function Reset fault Sensor 1 Sensor 2 Enable 1 Enable 2 PB upper PB lower UCM input 1
			UCM input 2 ✓ Analog function Analog frequency set- ting
• Analog inputs adjustment ••• 057 Offset IN4	0	v	♦ 0
••• 058 Multiplier IN4	1		\$ 1
••• 058 Input resistance IN4	100 kOhm		100 kOhm ▼ ✓ 100 kOhm 500 Ohm

Page 48 from 81

on

6.6 Open loop operation

Open loop controlled operation is also possible with this unit.

The operating modes of the controller may only be changed when the controller is switched off (OFF):

Parameter	Value	Unit		
• Controller operation (CONTROL)	off		off	▼
	o n		✓ off	

Select the output frequency for controlled operation.

Note: The value of the output frequency always has a crooked decimal point, as this value is calculated by the software.

Parameter	Value	Unit	
 Output voltage (POWEROUT) 			
069 Output frequency (Freq.)	61.496	Hz	♦ XX.XXX

In open loop mode, the output frequency can also be set via an analog input, here in the example via IN4.

Parameter	Value	Unit	
 Input functions ○ 055 IN4 function 	Analog frequen	cy setting	Analog frequency set-
			No function Reset fault Sensor 1 Sensor 2 Enable 1 Enable 2 PB upper PB lower UCM input 1 UCM input 2 Analog function ✓ Analog frequency set- ting
 Analog inputs adjustment 191 Lower limit of analog frequency setting 	40.496	Hz	♦ XX.XXX
\sim 0 192 Upper limit of analog frequency setting	60.496	Hz	★ XX.XXX

Specify the source of the output voltage:

Parameter • Output voltage (POWEROUT)	Value	Unit	
••• 077 Output voltage source	Output volt	age internal	Output voltage internal
Specify the fixed value of the "Internal o	utput voltage"		 ✓ Output voltage internal IN4 IN5 Output voltage bus
Parameter	Value	Linit	
• Output voltage (POWEROUT) ••• 076 Output voltage internal (Vout int)	100	VAC	
, 3 , 1			▼ ^^^<

6.7 Output voltage waveform

The sine waveform with 3rd harmonic is preset. If you want a different output waveform of the voltage, you can select sine waveform or create your own (table). Please contact the manufacturer for this.

Parameter	Value	Unit		
 Output voltage (POWEROUT) 				
066 Output voltage waveform (Curve)	Sinusoidal		Sine with 3rd harmonic	▼
	with 3rd har	monic	Sinusoidal ✓ Sinusodial with 3rd h monic Table	nar-

6.8 Continuous current of the magnetic output

The continuous current of the magnetic output "Current" corresponds to the effective continuous current of the vibration feeder output.

To ensure overloading of the vibrating magnet, the maximum continuous output current for the magnet is set in the "Current" parameter. 6A is used as the default value. If the magnet you are using has a different max. rated current, you can adjust it accordingly in this parameter.

Parameter	Value	Unit	
 Output voltage (POWEROUT) 			
••• 065 Continuous output current	6	Α	♦ 6

6.9 General unit parameters

6.9.1 Time span in the event of an autoreset malfunction

After the set time, error states of the unit are reset if the cause of the error has been eliminated.

Parameter	Value Unit		
 General device parameters 111 Auto reset fault 	3	sec	★ x

6.9.2 Switch off the autoreset function

If no autoreset is to take place, the value of the autoreset fault is set to zero.

Parameter	Value	Unit	
 General device parameters 			
⋯○ 111 Auto reset fault	0	sec	♦ 0

6.9.3 Enable via fieldbus

If the enable is made via field bus, this must be set accordingly.

Note: This additional function can only be used if your control unit has this function.

Parameter	Value	Unit
 General device parameters 		
○ 157 Activation bus	with bus	

6.9.4 Timeout fieldbus

To check the fieldbus connection, an information change is required at regular intervals. This time period can be adjusted accordingly.

Parameter	Value	Unit	
 General device parameters 			
••• 161 Timeout fieldbus	5000	ms	\$ 5000

6.9.5 Unlocking the device after a software update

After a software update, the control unit goes into device lock. In this case, the status indication in the display reads: Status

Lock

The device lock can only be cancelled via ParaDesk. In this case, please check all parameters, as new parameters may have been added. You can then set the device lock from "on" to "off" again:

Parameter	Value	Unit		
• General device parameters	-		off	▼
	оп		✓ off	

with bus

~

without bus

with bus

▼

6.9.6 Switch off RUN and OFF buttons

If, after commissioning, the control unit is enabled via a corresponding input, it is possible to switch off the function of the RUN and OFF buttons.

Parameter	Value	Unit		
• General device parameters •••• 093 RUN/OFF keys (RUN/OFF)	passive		passive	▼
	P		 ✓ passive active after Pon = active after Pon = 	OFF RUN

6.9.7 Switch off menu keys

If you want to make changes exclusively via ParaDesk and prevent changes from being made to the control, you can lock the menu buttons.

The quick jump keys are still active and the stored parameters can still be edited. Cf. chap. 6.9.8

Parameter	Value	Unit		
• General device parameters	nassivo		passive	▼
	passive		✓ passive	
			active	

6.9.8 Quick jump functions of the display menu

To be able to quickly call up parameters that are often needed, a direct jump to freely selectable menu items can be made on the $\textcircled{\bullet}$ and $\textcircled{\bullet}$ buttons.

Pressing the \odot or \bigcirc key in the status level switches directly to this parameter in the menu structure.

From here the operation is as described.

By default, the tey is pre-assigned with the quick jump function to "Sens Ref" (setpoint for the swing amplitude in gss). The key does not have a default setting. Cf. chap. 5.3

Parameter	Value	Unit			
 General device parameters 			off		▼
128 Quick jump to function Menu - key	off			-#	_
• 129 Quick jump to function Menu + key	Sens ref		•		
				Freq.	
				Current	
				Control	
				Sens ref	
				Cont. F	
				Slave	
				Scan	
				Vout act	
				lxt	
				Sens act	
				Temp	
				VDC Link	
				Input	
				Output	
				Freq.act	

6.9.9 Controller status at switch-on

The default setting of the controller state after switching on is that the controller is OFF and the magnet is thus switched off.

Pon=OFF (i.e. with "Power on" the state is "OFF"):

This state can also be reversed so that the output signal is already switched on after starting the unit.

Pon=ON (i.e. with "Power on" the state is now "ON"):

Note: For this state, the RUN/OFF buttons cannot be switched passively.

ParameterValueUnit• General device parameters••• 093 RUN/OFF buttons (RUN/OFF)active after Pon = 0FF

active after Pon = OFF ▼ passive ✓ active after Pon = OFF active after Pon = RUN

6.10 Magnetic output

6.10.1 Start-up and shut-down ramp

When switching the vibratory feeder on and off, a ramp can be set to realise a soft start or stop.

Parameter	Value	Unit	
	100	ms	♦ 100
o 099 Shut-down ramp	100	ms	♦ 100

6.10.2 Time constant overcurrent shutdown

The current value l²xt is a monitoring function to protect the connected vibratory feeder. This value indicates the time period in which the continuous current limit may be exceeded. If this value is exceeded, the output of the unit switches off.

Parameter	Value	Unit	
 Output voltage (POWEROUT) 100 Time constant l²xt Output current 	3	sec	♦ 3

6.11 Frequency monitoring

Our patented frequency monitoring function is used to detect unusual frequency changes and output an error (f Fail).

This is suitable, for example, to detect a broken spring. This function is only possible in control mode. The time until error output after exceeding the frequency monitoring limits can be changed.

6.11.1 Frequency monitoring with preset limit values:

Activation of frequency monitoring with preset limit values takes place when the controller is switched off (OFF):

Parameter Control operation CO (CONTROL) 	Value	Unit		
••• 104 Frequency control (Cont. f)		on	on	▼
 Frequency monitoring 			off ✔ on	
••• 177 Frequency monitoring (f set)	on		on	▼
			off ✓ on set	_
178 Error output (f Time)	60000	ms	♦ 60000	
\sim 179 limit frequency range below (f min)	3.0043	Hz	\$ 3.0043	
\sim 180 limit frequency range top (f max)	300	Hz	♦ 300	

6.11.2 Frequency monitoring with determination of new limit values:

Activation of frequency monitoring with determination of new limit values takes place with the controller switched on (ON):

Parameter ◦ Control operation CO (CONTROL)	Value	Unit		
•• 104 Frequency control (Cont. f)	on		on	▼
			off ✔ on	
Frequency monitoring				
177 Frequency monitoring (f set)	set		set	▼
			off	
			on	
			l ✓ set	

Note: Setting parameters to "set" is done while the unit release is active.

Parameter	Value	Unit
Frequency monitoring		
179 limit frequency range below (f min)	XXXX	Hz
New limit value corresponds to the current	output frequen	cy (Freq act) -3%

180 limit frequency range top (f max)
 xxxx
 Hz
 New limit value corresponds to the current output frequency (Freq act) +3%.

If, for example, a spring on the conveyor is broken, the frequency monitor detects the error and switches off with the error message "f Fail".

If only one spring is broken, the conveyor can possibly be operated until it is repaired. For this, however, the frequency monitoring must be set to the new limit values.

6.12 Functions of the inputs and outputs

6.12.1 Adjusting the level of the inputs

By default, the input levels correspond to positive logic, i.e. "high active", and can be changed to negative logic, i.e. "low active". Here at the example of IN1:

Parameter	Value	Unit	
 Input functions 			
••• 088 Level IN1	Low active		Low active

Lov	v active	▼
\checkmark	Low active	
	High active	

inverted

 \checkmark

▼

6.12.2 Adjusting the level of the outputs

The output signals can be output "positive" as standard or vice versa, i.e. "inverted". Here at the example of OUT1:

Parameter	Value	Unit	
 Outputs functions 			
	inverted		inverted
			positive

6.12.3 Analog inputs IN4 and IN5 Adjustment

Serves to adjust the offset at the inputs. The "offset" is first added to the applied voltage on the digitised value (negative values are also possible) and the result is then multiplied by the "multiplier".

Please note: The physical input range 0 ... 24V is not increased by this. Likewise, the result remains limited to 0 ... 100%. These setting options make it possible to set different input voltage ranges, e.g. 0 ... 10V or, with a corresponding load resistor, a current loop 0 ... 20mA or 4 ... 20mA.

6.12.3.1 Load resistance

Two load resistors can be selected. This makes it possible to realise a current loop input for 0 ... 20mA or 4 ... 20mA.

6.12.3.2 Calculation of offset, multiplier with analog specification of Sens ref

$$m = \frac{S_2 - S_1}{E_2 - E_1} \cdot 0,29 \frac{V}{g_{ss}}$$
$$b = E_1 - \frac{S_1}{S_2 - S_1} \cdot (E_2 - E_1)$$

with

- m Multiplier
- b Offset in V
- E₁ Input signal initial value in V
- E₂ Input signal final value in V
- S₁ Setpoint (Sens ref) Initial value in g_{ss}
- S₂ Setpoint (Sens ref) Final value in g_{ss}

Example1:	Default: $020g_{ss}$, $010V$ (or $020mA$) Offset = 0V Multiplier = $(20g_{ss} - 0g_{ss}) / (10V - 0V) \cdot 0.29V/g_{ss} = 0.58$
Example 2:	$ \begin{array}{l} \text{Default: } 030g_{ss} \ , \ 420mA \ (500\Omega = 210V) \\ \text{Offset} = 2V \ - \ 0g_{ss} \ / \ () \ \cdot \ () = 2V \\ \text{Multiplier} = \ (30g_{ss} \ - \ 0g_{ss} \) \ / \ (10V \ - \ 2V) \ \cdot \ 0.29V/g_{ss} = 1.0875 \\ \end{array} $
Example 3:	$ \begin{array}{l} Default: \ 1030g_{ss} \ , \ 010V \\ Offset = \ 0V \ - \ 10g_{ss} \ / \ (30g_{ss} \ - \ 10g_{ss} \) \ \cdot \ (10V \ - \ 0V) = \ -5V \\ Multiplier = \ (30g_{ss} \ - \ 10g_{ss} \) \ / \ (10V \ - \ 0V) \ \cdot \ 0.29V/g_{ss} = \ 0.58 \\ \end{array} $

MOSC

ELEKTRONIK UND ANTRIEBSTECHNIK GMBH

Settings of the parameters using the example of input IN5 according to example 2:

Parameter	Value	Unit		
 input functons 				
○ 056 IN5 function	unction analog function		analog function	▼
			No function	
			Reset Fault	
			Sensor 1	
			Sensor 2	
			Enable 1	
			Enable 2	
			PB upper	
			PB lower	
			UCM input 1	
			UCM input 2	
			✓ analog function	
			Analog frequency se	ət-
			ting	
	High active	2	High active	▼
			Low active	
			✓ High active	
 Analog inputs Adjustment 				
• 059 Offset IN5	2	V	▲ 1 008	- j
	-		▼ 1.990	
060 Multiplier IN5	1.0875		♦ 1.088	
••• 063 Input resistance IN5	500 Ohm		500 Obm	
			500 Onm	

6.13 Output voltage range for analog input

The output voltage during operation using an analog input signal can be limited. This makes it possible to use the analog input from 0-100%. For this purpose, parameter 067 min. output voltage can be selected so that the magnet starts to oscillate and parameter 068 max. output voltage is used to enter the voltage at which the pot starts to oscillate too much.

Parameter	Value	Unit	
-0 067 min. Output voltage	50	V	\$ 50
068 Max. output voltage	200	v	♦ 200

6.14 Pulsed operation

For some conveying applications it is necessary to clock the conveyor, e.g. when a pulsating partial flow is advantageous. The on/off times can be set separately.

Chapter 6: Settings via ParaDesk software		ELEKTRONIK	UND ANTRIEBSTECHN
 Pulsed operation PO 			
○ 081 PO on time	50	ms	\$ 50
○ 082 PO off time	50	ms	\$ 50

Specify the input of the sensor (here using IN1 as an example):

• Functions inputs

--- 052 IN1 Function

Sensor 1

-	
Ser	isor 1
	No function
	Reset Fault
 ✓ 	Sensor 1
	Sensor 2
	Enable 1
	Enable 2
	PB upper
	PB lower
	UCM input 1
	UCM input 2

IK GMBH

105CF

6.15 Level control

Note: This additional function can only be used if your control unit has this software function.

The level control or jam control avoids unnecessary conveying times. This reduces noise, lowers energy consumption and protects the material being conveyed (less friction and heat).

6.15.1 Level control with one sensor

Switching the conveyor on and off is enabled by a material sensor and controlled so that the material flow oscillates around the sensor.

The conveyor is switched on when the sensor (here in the example on IN1) is passive and the switch-on delay (071) has expired. The conveyor is switched off when the sensor is active and the switch-off delay (072) has expired. Level changes during the delay times reset them to 0.

Note: A release must be active. The enable can be activated either by pressing "RUN" on the unit or by an external input, if parameterised.

For this purpose, the operating mode "1 sensor on/off" must be activated in the parameter group "LC".

The max. switch-on time of the conveyor can be monitored via a separate time stage "073 LC Sensor Timeout".

If this function 073 is activated (i.e. greater than "zero"), the conveyor switches off after this time (error timeout). This function can also be parameterised to a message output. Cf. chap. 6.15.3

A parameter value of "zero" switches off the monitoring. There is no further monitoring of this sensor.

Input functions

--- 052 IN1 Function

Sensor 1

Sen	isor 1 🗸 🔻
	No function
	Reset Fault
 ✓ 	Sensor 1
	Sensor 2
	Enable 1
	Enable 2
	PB upper
	PB lower
	UCM input 1
	UCM input 2

6.15.2 Level control with two sensors

In conjunction with two material sensors, a material level is stored within a filling section. The conveyor is only switched on after the switch-on delay (071) when both sensors are low (no material being conveyed).

If both sensors are high (material present), the conveyor is switched off after the switchoff delay (072).

Note: A release must be active. The enable can be activated either by pressing "RUN" on the unit or by an external input, if parameterised. Cf. chap. 6.9.3

For this purpose, the operating mode "2 sensor on/off" must be activated in the parameter group "LC".

The max. switch-on time of the conveyor can be monitored via a separate time stage "073 LC Sensor Timeout".

If this function 073 is activated (i.e. greater than "zero"), the conveyor switches off after this time (error timeout). This function can also be parameterised to a message output. Cf. chap. 6.15.3

A parameter value of "zero" switches off the monitoring. There is no further monitoring of these sensors.

Parameter • Level controller (LC)	Value	Unit	
070 LC Operating mode	2 Sensor o	n/off	off ▼ off off Sensor on/off Sensor low/high Sensor low/high Sensor low/high
••• 071 LC switch-on delay (ON-del.)	30	ms	♦ 30
072 LC Switch-off delay (OFF-del.)	30	ms	♦ 30
073 LC Sensor Timeout (Timeout)	0	ms	• 0
165 LC Timeout switch off	on		on ▼ ✓ on off
074 LC Setpoint value low (V min)	50	VAC	\$ 50

Overcurrent PB Out UCM output

6.15.3 Level control with timeout function switched off

If the conveyor is not to switch off in the event of a timeout error, but instead a message is to be sent to the higher-level PLC via an output (here as an example OUT1), the timeout function can be switched off for this purpose.

Parameter	Value Unit			
 Level controller (LC) 		off		
165 LC Timeout switch off	off			
 Output functions 		on ✓ off		
 ○ 106 OUT1 Function 	Time-out	Time-out V		
		No function		
		Continuously active		
		Ready		
		Air		
		✓ Time-out		
		Output on		

6.16 Output air valve for sorting air

Note: This additional function can only be used if your control unit has this software function.

To support part transport by air, the "Air" output can be used to control an air valve. When the conveyor is released, the "Air" output is switched on first and the output voltage of the conveyor is ramped up with a time delay.

The "Air" output remains active for a follow-up time after the conveyor has been switched off.

The run-up and run-down times can be set separately.

Note: To activate the sorting air, an output must be assigned the function "air" (here as an example OUT1).

Parameter Output functions 	Value	Unit	
0 106 OUT1 Function	Air		Air 🗸
			No function Continuously active Ready ✓ Air Time-out Output on Overcurrent PB Out UCM output
 Sorting air SA (AIR) 			
○ 079 SA pre time (Pretime)	30	ms	\$ 30
080 SA post time (Postime)	30	ms	♦ 30

6.17 UCM

Note: This additional function can only be used if your control unit has this software function.

This control module can be used when input signals act on an output after passing through the UCM logic. Examples of this are the control of an air valve via a material sensor for sorting out incorrectly positioned parts or the control of a hopper conveyor for material replenishment.

6.17.1 Logical linking of the input signals for UCM module

6.17.1.1 one UCM input

6.17.1.2 two identical UCM inputs (inputs with OR operation)

6.17.1.3 Two different UCM inputs (inputs with AND operation)

ELEKTRONIK UND ANTRIEBSTECHNIK GMBH

••• 053 IN2 Function

UCN	1 input 2
	No function
	Reset Fault
	Sensor 1
	Sensor 2
	Enable 1
	Enable 2
	PB upper
	PB lower
	UCM input 1
✓	UCM input 2

Output on Overcurrent PB Out **UCM** output ▼

6.17.1.4 UCM output

Set the output signal of the universal control module accordingly (here using OUT4 as an example).

Parameter	Value Un	it
○ Output functions …○ 109 OUT4 Function	UCM output	UCM output
		No function Continuously active Ready Air Time-out

6.17.2 Operating mode "State

The UCM output is switched on as soon as the UCM input has been continuously active for the duration of the switch-on delay. The UCM output is switched off as soon as the input has been inactive continuously for the duration of the switch-off delay.

The max. switch-on time is monitored by the UCM time out function.

Example diagram:

Parameter ⊙ Universal controller module UCM + PB	Value	Unit	
0 117 UCM mode	UCM state		USM state off ✓ UCM state UCM edge UCM state, IN continu- ously active
118 UCM on delay	30	ms	★ XX
0 119 UCM off delay	30	ms	♦ XX

6.17.3 Operating mode "positive edge

The UCM output is switched on as soon as the switch-on delay has expired after a positive signal edge at the UCM input. The UCM output is switched off as soon as the switchoff delay has expired after the last positive signal edge.

Example diagram:

6.17.4 Link UCM output with enable

With parameter 120, the UCM output can be blocked, depending on the enable or the operating status of the unit.

Example diagram:

6.17.5 UCM with timeout function switched off

If the conveyor is not to switch off in the event of a timeout error, but instead a message is to follow to the higher-level PLC via an output (here as an example OUT2), the timeout function can be switched off for this purpose.

The max. switch-on time of the conveyor can be monitored via a separate time stage "163 UCM Timeout".

If this function is activated, the conveyor switches off after this time has elapsed. This function can also be parameterised to a signal output.

A parameter value of "zero" switches off the monitoring. There is no further monitoring of these sensors.

Parameter	Value	Unit			
-0 163 UCM Timeout	0	ms	•	Хх	
0 164 UCM timeout switch off	off		off		▼
			1	on off	
 Output functions 		1			
••• 107 OUT2 Function	Time-out		Tim	e-out	▼
		·	•	No function Continuously active Ready Air Time-out Output on Overcurrent PB Out UCM output	

6.17.6 UCM + PB

To operate pneumatic hoppers, for example, the output function PB OUT can be used. If the UCM OUT function is active, the PB OUT function is also active until the PB upper input becomes active. The PB OUT function remains passive until the PB lower input becomes active.

The max. switch-on and switch-off time of the PB OUT function is monitored by the PB time out function.

The inputs (here as an example IN1 and IN2) can be evaluated with a delay. E.g. to debounce the signals or to realise a delayed switching to the other direction of the conveyor.

If both inputs (PB upper and PB lower) are active at the same time, they are switched off and a timeout error message is displayed.

One output (here as an example OUT3) is set as PB output.

Parameter	Value	Unit		
 Oniversal controller module UCM + PB ○ 122 PB upper delay time 	500	ms	♦ Xx	ĺ
123 PB lower delay time	500	ms	♦ Xx	ĺ
0 121 PB Timeout	5000	ms	Xx	ĺ
• Input functions	DD		PB upper	
O US3 INZ FUNCTION	PB upper		No function Reset Fault Sensor 1 Sensor 2 Enable 1 Enable 2 ✓ PB upper PB lower UCM input 1 UCM input 2	
054 IN3 Function	PB lower		PB lower	▼
 Output functions 			No function Reset Fault Sensor 1 Sensor 2 Enable 1 Enable 2 PB upper ✓ PB lower UCM input 1 UCM input 2	
● Output functions ··· ○ 108 OUT3 Function	PB Out		PB Out	▼
			No function Continuously active Ready Air Time-out Output on Overcurrent ✓ PB Out UCM output	

6.18 Master/Slave

Note: This additional function can only be used if your control unit has this software function.

It is possible to operate several control units in a network. For this purpose, e.g. one control unit can be parameterised as master and many other units as slaves. The master unit sets the frequency for the slave units via synchronous pulses.

A unit parameterised as a slave will only switch on (RUN) when synchronous pulses from the master are applied to its slave pulse input.

If there are no more synchronous pulses (master off), the unit switches back to STOP after a short delay.

Attention: A maximum of 10 units can be operated by one master on one bus.

Note: If a unit is parameterised as a slave, it can only be operated with amplitude control, but not with frequency control. The frequency is fixed by the master. The master, however, can perform amplitude and frequency control.

Attention: If the unit is configured for master/slave operation, the output OUT3 or the input IN3 is permanently required for this operation. In this mode, it is not possible to use the two I/Os for other functions.

6.18.1 Master unit settings

Parameter	Value	Unit	
 Output functions 			
⋯○ 108 OUT3 Function	Master pulses		Master pulses

 \checkmark

Slave pulse

6.18.2 Slave unit settings

The slave function can be switched on and off and the phase position can be set in degrees to the master unit.

Parar	neter eter / Slave operation	Value	Unit		
··· 0 10	05 Slave operation (Slave)	on		on V	1
~ 10	22 Dhann official class an existing	0	0	on ✓ on	
	13 Phase offset slave operation	U		♦ Xx	
 Inpr 	ut functions				
O	054 IN3 Function	Slave pulse		Slave pulse V	1
				No function	I
				Reset Fault	l
				Sensor 1	l
				Sensor 2	l
				Enable 1	l
				Enable 2	l
				PB upper	l
				PB lower	
				UCM input 1	
				UCM input 2	1

6.19 Display contrast

The brightness of the display can be adjusted variably.

Parameter	Value	Unit	
General device parameters			
••• 061 Display contrast (Contrast)	3000		Хххх

6.20 Info parameter

The Parameter information area displays various information and statuses about the unit.

Parameter	Value	Unit
Firmware	3xx	
••• Hardware status (HW)	1 xx	
•••• File:	xxx.apf	
6.21 Measurements

In the right half, current measurement data and states of the control unit are displayed.

Measurements:	Value	Unit
Status		
••• Total operating hours (ON-time)		h
Conveyor drive operating hours (run-time)		h
••• Serial number		
···· Temperature (Temp)		°C
ODC link voltage (VDC Link)		V
···· Status of IN1		
O Status of IN2		
Status of IN3		
••• Status of IN4 Level		V
••• Status of IN5 Level		V
••• Status of IN4 Function		%
••• Status of IN5 Function		%
••• Output current		Α
Output current I ² x t (Ixt)		Α
Output voltage (Vout act)		VAC
••• Modulation Level		%
 Actual value of vibration sensor (Sens act) 		gss
Actual output frequency (Freq act)		Hz

6.21.1 Explanation of the measured values

6.21.1.1 Status

The unit status is displayed here (in fault-free status: operating status, otherwise: error code cf. chap.7.2).

Not Ready (Nready) Ready (Ready) Release (Run)

6.21.1.2 Total operating hours (ON-Time)

The operating hours counter counts the operating time of the unit. It is active as soon as the unit is connected to the mains voltage and switched on.

6.21.1.3 Conveyor drive operating hours (run-time)

This operating hours counter only counts the effective running time of the conveyor.

6.21.1.4 Serial number

Displays the identification number of the control unit (identical to the serial number on the type plate).

6.21.1.5 Temperature (Temp)

The temperature of the unit at the bottom of the unit. If a critical limit temperature is exceeded, the control unit switches off.

6.21.1.6 DC Link voltage (VDC Link)

The DC link voltage is continuously monitored. If there is a fault, the output stage is locked, the control unit switches off and an overvoltage or undervoltage fault is generated.

6.21.1.7 Status of IN1...3 Displays the digital status of the inputs IN1 ... IN3.

6.21.1.8 Status of IN4...5 Level Displays the analog voltage value at the input terminal.

6.21.1.9 Status of IN4...5 Function

Shows the percentage value of the selected analog function incl. offset and multiplier setting.

6.21.1.10 Output current

The output current is continuously monitored and displayed.

6.21.1.11 Output current l² x t (lxt)

The output current is calculated with a time constant. If the value exceeds the continuous current limit, the unit is switched off.

6.21.1.12 Output voltage (Vout act) Instantaneous output voltage at the magnet output.

6.21.1.13 Modulation Level

Control of the pulse width modulation (PWM) at the solenoid output. If this value is 100%, then the voltage at the delivery output cannot be increased any further. The mains input voltage is too low for the desired output voltage.

6.21.1.14 Actual value of vibration sensor (Sens act) Displays the current measured value of the vibration sensor.

6.21.1.15 Actual output frequency (Freq act) Current output frequency (Freq act)

7. Troubleshooting and fault clearance

7.1 Resetting fault messages

- OFF / ON of the supply voltage (Attention: before switching on again, wait >1min until the internal energy storage has been emptied (LCD off).
- Fault reset via terminal function
- Autoreset

7.2 Possible error causes

Some possible causes of errors are listed in the table below.

Display Display	Error	Possible cause	Remedy
Status RUN	Vibrating solenoid does not run de- spite release	Vibration magnet or wiring de- fective, Output voltage too low	Check magnet, repair if neces- sary, Check parameters
Status Lock	Not ready	Device lock after update	Cf. chap. 6.9.5
Status Nready	Not ready	Supply voltage missing or too low	Check voltage source, wiring and fuses
Status UV	F1 Undervoltage	Supply voltage (power) was too low during enable (possi- bly only briefly)	Check voltage source, wiring and impedance. The voltage may have dropped briefly due to a high current demand. Carry out a reset (switch off, wait until the unit is completely off and switch on again)
Status OV	F2 Overvoltage	Supply voltage too high (pos- sibly only briefly)	Check voltage source Perform reset
Status OT	F3 Overtempera- ture	Bottom of appliance too hot	Allow to cool down, ensure suffi- cient ventilation, perform reset
Status OC	F4 Overcurrent	I ² xt monitoring of the solenoid current has triggered.	Check limit value specification, check solenoid current
Status Outstage	F5 Output stage	Defective magnet or earth fault	Check for short circuit/earth fault, check solenoid/coil for de- fect
Status Timeout	F6 Timeout	Timeout for UCM or level con- trol	Check sensors, Check parameters
Status SENS	F7 Vibration sen- sor	No correct signal from the vi- bration sensor	Check vibration sensor and mounting
Status Scanfail	F8 Scanfail	The parameterised scan cur- rent is not reached	Check solenoid connection and rated current
Status Bus module	F9 Bus modul	Communication monitoring with the bus module has trig- gered	Check bus connection, plug, ca- ble
Status f Fail	F10 Frequency monitoring	Frequency monitoring in con- trol mode has addressed	Check limit values, Check conveyor (e.g. spring breakage)

When sending the unit for inspection or repair, please specify the following:

- Type of error
- Accompanying circumstances
- own suspected cause of error
- previous unusual occurrences

8. Maintenance and cleaning

8.1 Maintenance

The control unit is maintenance-free if the prescribed operating conditions are observed (see chapter 3.2).

8.2 Cleaning

<u>Do not</u> clean the surfaces of the control unit with methylated spirits, solvents or aggressive cleaners.

9. Manufacturer's declaration

The manufacturer, Mosca Elektronik und Antriebstechnik GmbH, hereby declares that the SP01075 control unit described in this technical documentation is intended for installation in a machine or for assembly with other components to form a machine. The SP01075 control unit is not a machine in the sense of the Machinery Directive 2006/42/EC.

Instructions and recommendations for installation and intended operation are contained in this technical documentation.

Commissioning of the machine is prohibited until it has been established that the protection and safety requirements of the Machinery Directive 2006/42/EC have been met.

These technical documents describe measures with which the machine complies with the EMC limits. The electromagnetic compatibility of the machine depends on the type and care of the installation carried out. The responsibility for compliance with the EMC Directive 2004/108/EC in the machine application lies with the user.

Standards and regulations considered

- IP protection classes: EN 60529, 1991 edition
- Basic material for printed circuits: DIN IEC 60249 Part 1, Edition October 1986
- Printed circuits, printed circuit boards: DIN IEC 326 Part 1, March 1985 edition
- Determination of clearance and creepage distances: DIN VDE 0110 Part 1-2, edition October 1985
- Emitted interference: IEC61000-6-4:2006+A1:2010 IEC610003-3-2:2005+A1:2008+A2:2009 IEC61000-3-3:2013
- Immunity: IEC61000-6-2:2005 IEC61000-4-2:2008 IEC61000-4-3:2007+A1:2007+A2:2010: IEC61000-4-4:2012 IEC61000-4-5:2005 IEC61000-4-6:2008 IEC61000-4-8:2008 IEC61000-4-11:2004

10. Operating software

In order to be able to parameterise and monitor the control unit SP01075, the monitor software "ParaDesk" is required.

The latest version can be downloaded free of charge from the homepage at http://www.paradesk.de.

Note: Please refer to the ParaDesk operating instructions for installation and operation of the software. These can also be found at the above Internet address.

11. List of changes

11.1 Documentation

Date	Change
01/16	Original version
03/16	Connection assignment, technical data, menu structure changed
28.08.16	Modified pin assignment, dimensional drawings added, Profinet supplemented
31.08.16	Modified pin assignment, dimensional drawings added, Profinet supplemented
06.09.16	Input current supplemented
19.10.16	Picture, characteristics replaced
08.11.16	Input currents corrected, parameter numbers corrected, Various minor corrections, leakage current diagram, standards
16.11.16	Data relay output added
06.12.16	Assignment X7, relay contact extended by OUT4, Profinet H21, H22 exchanged
14.12.16	Additions to chap. control operation, chap. USM with Paras inserted, parameters for key lock inserted
22.12.16	Menu extended
11.01.17	Quick jump +- button added
16.01.17	Saving parameters without additional query as of FW209
31.01.17	Designation M12 sockets and plugs extended
11.10.17	Display indications corrected
19.10.17	Various small things corrected
02.12.17	Chap. 7.1 P86, Chap. 7.2.3.5 expanded, Chap. 7.2.6.3 expanded, Chap. 7.2.12.2 expanded
16.01.18	Product image renewed
05.03.18	Chap. 1 Note on equipment and topicality inserted
26.07.18	Chap. 6.12.3.2 extended
24.10.19	Dimensional drawings updated
15.11.19	Mater/Slave operation updated
14.01.20	USM updated, device lock added, RUN/OFF buttons expanded, PB extended
14.02.20	Added chapter on cleaning
09.04.20	Original version added
25.05.20	Identifier and table for IP54 RS485 added
22.09.20	Frequency monitoring inserted, error code extended
26.07.22	Instructions completely revised

30.10.23 Output frequency controllable via analog input added

11.2 Software

Version	Change
FW221	Original version
FW222	Extension of the selection of parameter 077 "Output voltage source" with IN5
FW223	Fieldbus query for Ethernet/IP added
FW300	Addition of device lock with parameter 190 for activation after device update, Extension of the display menu with submenu item "SETTINGS", Adaptation of the firmware for uniform control with Profinet and Ethernet, Separate timeout function for PB and USM (new parameter 163)
FW301	Troubleshooting
FW302	New functions for RUN and OFF button
FW303	Extension of the receive and transmit enable on fieldbus module additionally now with device status NREADY
FW304	USM module extended to 2 inputs and enable extended to enable 1 and 2
FW305	Change Enabling of the bus module is only accepted after a restart
FW306	Frequency monitoring with the parameters f Set, f Time, f min and f max
FW307	Transfer of the parameters 098 start-up ramp and 099 run-down ramp to the display menu
FW308	Separate parameters 165 and 166 for timeout switch-off for FSS and USM mod- ule
FW309	Number extension of the operating hours counter in the display menu
FW310	Revision of the measurement evaluation for frequency tracking
FW311	New variant for resonance search via parameters 181 and 182
FW312	Undervoltage identification modified for better operational safety
FW401	Changeover to new fieldbus module
FW402	Output frequency controllable via analog input